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Abstract

This paper describes an algorithm for reducing a real
matrix A to block diagonal form by a real similarity trans-
formation. The colums of the transformation corresponding
to a block span a reducing subspace of A, and the block is
the representation of A in that subspace with respect to
the basis. The algorithm attempts to control the condition
i 4 of the transformation matrices, so that the reducing sub-

spaces are well conditioned and the basis vectors are numeri-
cally independent.
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AN ALGORITHM FOR COMPUTING REDUCING SUBSPACES i
BY BLOCK DIAGONALIZATION

Connice A. Bavely
G. W. Stewart

1. Introduction
The purpose of this report is to describe an algorithm for reducing

a real matrix A of order n to a block diagonal form by a real simi-

larity transformation. Specifically, the algorithm attempts to compute

1

a real nonsingular matrix X such that X “AX has the form

=1

(1.1) X 'AX = B = diag(B,,B %

Lol Y

where each matrix Bi is square of order n,.
A decomposition such as (1.1) has many applications. When the blocks

Bi are small, powers of A can be economically calculated in the form

o i k pk kyy-1
A = X dlag(Bl,BZ,-a-,Bs)x ’

and this fact can be used to simplify the computation of functions of A
defined by power series (e.g. see [7]). If X is partitioned in the form

X = WXy nikyd

where each Xi has n; colums, then the columns of Xi form a basis for
a reducing subspace of A, and B, is the representation of A with respect

to that basis. The associated spectral projector is given by xixg'l), where

A

= .
~ 4
»

=
<

SiiN
353007

WUITHEVTIYAY ROINLINLSIT

J
goe




. Henieac oo o
" W T T S

- 2

1

Xg'l) is formed from the corresponding rows of X = (for definitions

and applications see [4]).

There are theoretical and practical limitations on how small the
blocks in (1.1) can be. Theoretically, they can be no smaller than the
blocks in the Jordan canonical form of A. Practically, they may have

to be larger. The numerical problems associated with decompositions such

as (1.1) have been examined in detail in [3]. Here we give only a brief
summary .

The principal difficulty is that the Jordan form of a matrix need not
be numerically well determined; very small perturbations in the matrix
may cause blocks to split or coalesce. Any attempt to separate two such
"nearby'’ blocks will result in a transformation matrix X whose colums

are nearly linearly dependent, or equivalently X will be ill-conditioned

in the sense that the product HXHHX-IH is large (here |/+|| denotes a
suitable matrix norm). In this case, it will be impossible to form )(-1 j
or sclve linear systems involving X accurately [10,14]. The phenomenon

is loosely associated with close eigenvalues; but there are matrices with

equal eigenvalues, e.g. symmetric matrices, that can be split completely
into 1 x 1 blocks, and there are matrices with well separated eigenvalues 1
that cannot be split except by very ill-conditioned transformations.

E 4 Our algorithm attempts to avoid these difficulties by working only
; with well-conditioned transformations. If a group of eigenvalues cannot *

be split off into a block by a transformation whose condition observes a
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tolerance provided by the user, the block is enlarged until a well-
conditioned reducing transformation can be found. In principle this does
not insure that the final transformation will be well-conditioned, since
it is formed as the product of a number of reducing transformations;
however, we have found that when a matrix possesses a well-conditioned
decomposition of the form (1.1), our algorithm generally finds it. And
the exceptions have not so much to do with the ill-conditioning of X as
with the failure of the algorithm to split the matrix completely owing
to the comingling of degenerate eigenvalues with well-conditioned ones.

A good deal of work has been done on the numerically stable simplifi-
cation of matrices by similarity transformations [5,6,8,12,13], most of
which has been summarized in [3]. For the most part, these algorithms
attempt to go farther than ours in reducing the matrix, however at con-
siderable cost in complexity and computation. The virtues of the algo-
rithm proposed here are its simplicity and economy. When it is required
to reduce a matrix beyond what is done by our algorithm, the other
techniques can be applied to the blocks produced by our algorithm. The
algorithm also has the advantage that it works entirely with real matrices
by the device of grouping pairs of complex conjugate eigenvalues in the
same block.

In the next section of this paper the algorithm is described. In
Section 3 some numerical examples are given. Programming details and a

listing are given in an appendix.

| —5




2. The algorithm.

The first part of the algorithm uses orthogonal transformations to
reduce the matrix A to quasi-triangular form, that is to a block upper-
triangular form in which the diagonal blocks are of order at most two.
The blocks of order one contain real eigenvalues of A and the blocks
of order two contain complex conjugate pairs of eigenvalues. The order-
ing of the blocks is arbitrary, and the order can be changed by applying
appropriate orthogonal transformations. Since this reduction of A can
be effected by standard techniques [9,11], we may assume that A is
already in quasi-triangular form.

The subsequent block diagonalization is accomplished as follows.

The matrix A 1is partitioned in the form

A
A=(11 Alz)’
0L

where initially A is 1 x 1 or 2 x 2 depending on the dimension of

11
the leading diagonal block of A. An attempt is then made to find a

similarity transformation X such that

0
lax = (Au ) :
0 A,

If such a transformation can be found and if it is not too ill-conditioned,
the reduction proceeds with the submatrix A22' If not, a suitable 1 x 1
or 2 x 2 diagonal block from Ay, is located and moved by means of ortho-

gonal transformations to the leading position of AZZ‘ The block is then
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adjoined to All by increasing the order of A11 by one or two, as is
appropriate, and another attempt is made to find a reducing matrix X.
The implementation of such an algorithm requires the answers to two

questions.

1. How may the transformation X be computed?

2. In the event of failure, which block of A22 is

to be incorporated into All?

We shall now answer these questions.

We seek the transformation X in the form

i ¥
(2.1) X= < ) 5
g1

where the identity matrices are of the same orders as A11 and Aype The

inverse of X 1is easily seen to be

i
(2.2) 1. ( ) ;
51

Hence

P-PA,,+A
o (An 5 12) :
0 Ay,

and the problem of determining X becomes that of solving the equation

(2.3) A

11P - PA

22 = A2 -

Because A11 and A22 are quasi-triangular, this equation can be solved

by a back-substitution algorithm of Bartels and Stewart [1], provided the
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eigenvalues of A11 and A,, are disjoint.

From (2.1) and (2.2) it follows that X will be ill-conditioned
whenever P is large. As each element of P is generated, it is tested
to see if its magnitude exceeds a bound provided by the user. If it does,
the attempt to compute X is abandoned and a new, larger block A11 is
formed. If no element of P exceeds the bound, the matrix X is ac-
cepted and the matrix A is deflated as described above. The transforma-
tion X 1is postmultiplied into a matrix that accumlates all the trans-
formations made on the matrix A.

The process for selecting a 1 x 1 or 2 x 2 block of Ay, to incor-

porate into A 1 goes as follows. We compute the mean of those eigen-

1
values of A11 having nonnegative imaginary part. A block is chosen

from A22 whose eigenvalue with nonnegative imaginary part is nearest

this mean. This block is moved, as described above, by orthogonal trans-
formations to the leading position in A22, where it is incorporated into
All' The program HQR3 [11], which can be used to obtain the initial quasi-
triangular form, has a subroutine which will compute these orthogonal
transformation. The transformations are of course postmultiplied into the
accumulating matrix.

We sumarize our algorithm in the following informal code. Further
details can be found in the appendix to this paper, where a FORTRAN sub-
routine implementing this code is given. The code takes as input an
array A of order N containing the matrix A and an array X in which

the transformations are accumulated. In addition the user must provide a

s
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tolerance to bound the size of the elements of the deflating transforma-

tions. The integers L11 and L22 point to the beginnings of the current
blocks A.11
explanatory. Comments are delineated by the symbol #.

and A.22 in the array A. The informal code should be self-

1 reduce A to quasitriangular form, accumulating the
transformations in X [10];
2 o Lil= 1
3 : loop # until the matrix is diagonalized #
3.1 : if L11 > N then leave 3 fi; 1
| 3.2 - L22 = L11; e 1
i - i, 2% 3 loop # until a block has been deflated # ,
r kP o e if L22 = L11 then # use the first1xlor 2 x 2 block #
‘ 3.3.0¢8.1: "M = order of the block at L11;
k K T L S L22 = L22 + M;
§.3.1 else # augment A 1 with alxlor 2 x 2 block from Ay #
3.3.1e.1: compute the meaﬁ of the eigenvalues of A11 with
nonnegative imaginary parts;
, 3.3.1e.2: find the M x M # M= 1 or 2 # block of A,, whose eigen-
; value with nonnegative imaginary part iS"nearest the
mean; :
i sedvle.5e move the block to the leading position of A22 accumulating
‘ the transformations in X;
i 3.3.1e.4: . L22 = L22 + M # which incorporates the block in A11 ¥
| SUIEEVL i
3.3:1 if L22 > N then leave 3.3 fi;
3.3.5 attempt to split off A,, [11];
g 3.3.4 if the attempt was succédsful then leave 3.3 fi;
i 3.5.5 restore Alz;
' 3.3 end loop;
3.4 if L27 = N then accumulate the deflating transformation in X
fi;
3.5 scale colums L11 through L22-1 of X so that they have
2-norm unity, adjusting A accordingly;
3.6 L11 = L22;
3 end loop;
A Several comments should be made about the algorithm. First, it uses
& only real arithmetic, even when A has complex eigenvalues. Second, the

algorithm cannot guarantee that the final transformation is well condi-

tioned, since the bound on the elements of P restricts the condition of
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only the individual transformations comprising the final one. Nonethe-
less, we have found little tendency toward excessive growth in the condi-
tion of the transformation. Third, no attempt is made to segregate nearly
equal eigenvalues initially into clusters; whether an eigenvalue splits
off or not depends entirely on its determining a suitably small matrix

P. This is important, since it means that the algorithm can compute

well conditioned eigenvectors for multiple eigenvalues (a little help is
required from rounding error; see Section 3).

The strategy for determining what eigenvalues to add to the current
group has the defect that it can mix well-conditioned and ill-conditioned
eigenvalues that are nearly equal, thus missing the possibility of a more
complete reduction. This is not a serious problem when the blocks are
small. However, if a finer resolution of the structure of the matrix is
required, the techniques referenced in Section 1 may be applied to the
blocks produced by our algorithm. In fact our algorithm can be regarded
as a preprocessing step to reduce the problem to a size where it can be
attacked by more sophisticated, but more expensive methods.

We note that the output of our algorithm may depend on the user
supplied tolerance for the elements of P. In general the larger the
tolerance, the smaller the blocks but the more ill conditioned the trans-
formation. This tradeoff is an inevitable consequence of the poor deter-
mination of the structure of a matrix in the presence of errors, and we
know of no algorithm that relieves the user of the necessity of making a

decision of this kind.

e
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So far as storage is concerned, the algorithm requires 2n2 loca-
tions to contain the matrices A and X and a number of arrays of order
n. This is the same as the storages required by algorithms that compute
the eigenvectors of a general matrix.

Excluding the initial reduction of A to quasitriangular form, the
bulk of the computations in the algorithm occur at statement 3.3.3, where
an attempt is made to solve the equation (2.3), and at statement 3.4, where
the transformation is accumulated. The multiplication count for the algo-
rithm for solving (2.3) is of order (sz + mzl)/z, where & 1is the size
of A11 and m is the size of A22' The cost of accumulating this
transformation in X is of order g.men. Thus, at one extreme, if all the
eigenvalues of A are real and they all can be deflated, the cost in
multiplications will be of order n3/2, which compares favorably with algo-
rithms for computing the eigenvectors of A from its quasitriangular
form. On the other hand, if the eigenvalues of A are real and none of
them can be deflated, the algorithm will require on the order of n4/12
multiplications.

Although an n4 operation count is disturbing, there are several
mitigating factors. First, we do not expect the algorithm to find many
applications to matrices that cannot be substantially reduced by it,
since the object of using it is to save on subsequent calculations with
the matrix. Second, the count assumes that the algorithm for solving (2.3)

must be executed to completion before it is found that P is umacceptably

large. This is not likely; in fact because the algorithm [11] for reducing
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A to quasitriangular form arranges the eigenvalues in decreasing order
of magnitude, it is rather unlikely. Finally the order constant 1/12 is

is modest; for n 1less than 60 the bound is less than 5n3.

3. Numerical results.

In this section we summarize the results of some numerical experi-
ments. Two of the tests were performed with a class of test matrices
generated as follows. Let J be a given matrix whose structure is known

(e.g. J could be in Jordan canonical form). Let

AT e el
Hl =1 = ee s
3 It
where e = (1,1,...,1)", and
PRl B
H, = I E'ff "
where f = (1,-1,...,(-1)n_1)T. Note that H1 and HZ are symmetric and

orthogonal. Let

8% Alagllio, 0 et

)

where o 1is a given parameter. Then we take A in the form
g T i -1

(3.1) A OhﬁﬂJmfﬁ) »GﬁmﬂJmﬁ %).

The matrix A, which is cheap to compute, has the same structure as J.
The transformation Hy)SH; can be made as ill-conditioned as desired by

varying o.
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In describing the results of the tests we report two numbers. The

first is the maximm p of the scaled residuals

X "Axi-XBi”oo

P TR,
4 ot rg i,

where )(i is composed of the colums of X corresponding to the block
Bi' Second we report |(X'1(|m. Together these numbers give an idea of how

stably the reduction proceeded; for if
R=AX - XB

then, with E = RX_l, we have that
(A+E)X - XB =0 ;

that is B is exactly similar to A + E. The relative error that this per-

turbation represents in A is

-1
H%Tllls IIEI( ;

Since [|X|| = 1, the relative error will be of the order ollx 1.

The first test case illustrates the ability of the algorithm to split

apart nearly equal eigenvalues with independent eigenvectors. We took

J= diag[l,l-s,1+e, (i i) ,.3,.4,.5,.6,.7]

The algorithm was applied for various values of ¢, o, and RMAX, the bound
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on the size of the deflating transformations. The results are summarized

in Table 1, in which the eigenvalues of A are numbered as follows:

1 2 5 4 S 6 7 8 9 10
1+i 1-i 1+e 1 1-¢ o7 .6 T .4 D

Complex eigenvalues are indicated by a circumflex.

Provided RMAX was large enough to allow a sufficiently ill conditioned
transformation, all the cases were split completely. The condition of the
transformation was in no case much greater than the condition of the scramb-
ling transformation in (3.1). It is of interest to note that the algorithm
was successful when ¢ = 0, that is when A has three equal eigenvalues.
Mathematically, the algorithm for solving (2.3) breaks down when A11
and Ay have common eigenvalues; however, the experiments indicate that
if the equal eigenvalues have independent vectors, rounding error will
i perturb them enough for the algorithm to work.

The second example shows the failure of the algorithm's strategy for

selecting the next eigenvalue to be adjoined to All' Here J has the

J-diag[1,< ),.3,.4,.5,.6,.7,.8]

and o was taken to be one. Of the four eigenvalues at unity, one is per-

form

oo
Ok
-~

fectly conditioned, and the other three, which belong to a single Jordan
block, are very ill-conditioned. To six figures the computed eigenvalues

= were

JEEP 4
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1.00073 + 0.001303i
1.00073 - 0.001303i
1.00000
0.99853

.80000

The pair of complex eigenvalues could not be deflated, since they were
coupled to the third member of the block. But this member would not be
adjoined without first adjoining the well conditioned eigenvalue at unity.
Consequently, the algorithm produced a single block of order four, rather
than two blocks of orders one and three. This block of order four ceuld
be reduced further by the more sophisticated techniques described in the
references.

The third test case is the Frank matrix of order 12 which has appeared
frequently in the literature [2,3]. The smaller eigenvalues of this matrix
are extremely ill conditioned. The results of test runs on this matrix

are summarized below.

RMAX BLOCK STRUCTURE b Hx'lll°°
10 1,2,3,4,5,(6,7,8,9,10,11,12) 2.9 x 10/ 93.6
50 1,2,3,4,5,6,(7,8,9,10,11,12) 2.9 x 10"/  2920.2

100 1,2,3,4,5,6,(7,8,9,10,11,12) 2.9 x 10"/  2920.2

1000 1,2,3,4,5,6,(7,8,9,10,11,12) 2.9 x 10"  2920.2

The algorithm performed much as expected, separating the larger eigenvalues

H
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and grouping the smaller eigenvalues together. This grouping is consistent
with the precision of the computation.

The final test case is included because the failure of our algorithm
to decompose it reveals the shaky foundations of a fairly common numerical
practice. Specifically we generated the companion matrix of the polynomial
given in [14, p. 74]. Since the zeros of this polynomial are not very ill
conditioned, we were surprised when the algorithm failed to split off so |
much as one. Some further computations revealed that the matrix of left

/ eigenvectors (the inverse Vandermode of the zeros) had rows of order

6 . 108.

10 This explains the failure to reduce the matrix. More important,
though, it shows that the eigenvalues of the companion matrix are much
more ill conditioned than the zeros of the polynomial and suggests that the
, practice of using eigenvalue routines to find zeros of polynomials can

result in an unnecessary loss in accuracy.
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o e RMAX BLOCK STRUCTURE X
1.0, 20! 10. 3.2 ,3.4,5,6,7,8,530,.. 2.1x107 . 7.7
1073 10. (1,2),3,4,5,6,7,8,9,10 1.4 x107- 6.7
0.0 10. d,3),3,4,5,6,7,8,9,10 1.1 x10/ 8.0
10.0  10° 10. d,%),3,4,5,6,7,8,9,10 1.5 x 10"  25.6
100 10. 1,2),3,4,5,6,7,8,9,10 1.8 x 10 .= 25.4
0.0 10. d,%,3,4,5,6,7,8,9,10 1.6 x 107’  24.2
100.0 107} 10. d,2),3,4,5,6,7,8,9,10 1.1 1077 187.9
1073 10. d,2),3,4,5,6,7,8,9,10 1.3 x 10"/  196.6
0.0 10. d,9,3,4,5,6,7,8,9,10 1.2 x 10" - 157.9
1000.0 1071 10. (1,5,4,5,5),(6,7,8:9);10. 11 % 2057 326.6
100. 1,2),3,4,5,6,7,8,9,10 1.0 x 10°° 1537.9
107° 10. ¢1,7,4,3,5),(6,7,8,9),10 .7.8 . 10"° . 333.8
100. i,9),3,4,5,6,7,8,9,10 7.8 x 10°° 1559.1
0.0 10. d,2,3),4,5,(6,7,8,9),10 8.2 x 10°°  304.1
100. (1,9,3,4,5,6,7,8,9,10 8.2 x 10°° 1355.7

Table 4.1
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PROGRAMMING DETAILS AND PROGRAM LISTING

Al. Usage.

The calling sequence for BDIAG is

CALL BDIAG(A,LDA,N,EPSHQR,RMAX,ER,EI,TYPE,BS,X,LDX,FAIL).
The parameters in the calling sequence are (starred parameters are
altered by the subroutine)

*A(LDA,N) ar array that initially contains the N x N matrix

to be reduced. On return A contains the reduced
block diagonal matrix.

E ¢ LDA the leading dimension of A.
N the order of the matrices A and X.
EPSHQR a real variable containing a convergence criterion for
the subroutines HQR3 and EXCHNG [11].
RMAX a real variable containing a bound on the absolute
i values of the elements in the reducing matrices.
i
i *ER(N) a real array containing the real parts of the eigen-
; values of A.
% *EI(N) a real array containing the imaginary parts of the
eigenvalues.
*TYPE (N) an integer array whose i-th entry is

0 if the i-th eigenvalue is real
1 if the i-th eigenvalue is complex with positive
imaginary part
2 if the i-th eigenvalue is complex with negative
imaginary part
-1 if the i-th eigenvalue could not be computed

*BS(N) a singly subscripted array that contains information
on the block structure of the matrix returned by the

5 program. If there is a block of order K at A(L,L),

] then BS(L) ,BS(L+1),...BS(L+K-1) contain the integers

3 K,-(K-1),...,-1. Thus a positive entry of K indi-
cates the start of a block of order K.
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*X (LDX,N) an array into which the reducing transformations are
accumulated.
LDX the leading dimension of X.
FAIL a logical variable which is false on a normal return

and is true on return if an error has occurred.
The program requires the programs ORTHES [ 9], ORTRAN [ 9], HQR3 [11],
EXCHNG [11], SHRSLV [1], DAD and SPLIT [11].
A suitable choice for the parameter EPSHQR is the rounding unit of
the computer on which the program is being run; i.e. if one is working
in a precision of about t decimal figures EPSHQR should be of order 10°t,

AZ. Programming details.

In this section we shall describe some of the details of the imple-
mentation of the algorithm. Throughout this section we refer to the outline
of the algorithm in Section Z.

Statement 1. This is accomplished by the EISPACK routines ORTHES and
ORTRAN [ 9] and the QR routine HQR3 [11].

Statement 2. Ll11 points to the leading position of the current
block All, which is of order DA1l.

Statement 3. This is the main loop of the program. It ends when
L11 > N, indicating that there are no further blocks to deflate.

Statement 3.2. L22 points to the leading position of the current
block A22, which is of order DA22.

Statement 3.3. In this loop A11 is repeatedly augmented until it

can be deflated or until A22 is void.
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Statements 3.3.1t. A11 is initially void. Here it is taken to be
the 1 x 1 or 2 x 2 block starting at LI11.

Statements 3.3.le. This is the search for a 1 x 1 or 2 x 2 block
described in Section 2.

Statement 3.3.le.3. The subroutine EXCHNG [11] is used repeatedly
to move the block just located to the beginning of Ajype After each
exchange of a complex block SPLIT [11] is called to recompute its eigen-
values and to see if, owing to rounding error, it can be split into a pair
of real eigenvalues.

Statement 3.3.2. Because A22 is void, A11 is effectively deflated.

Statement 3.3.3. The matrix A12 is saved below the lower subdia-

gonal of A, in case the attempt to deflate A11 is unsuccessful. Since

the routine SHRSLV [ 1], which computes the deflating transformation,

e et

; requires A11 to be lower Hessenberg, the subroutine DAD is called to
! transform A11 and A12' SHRSLV has been modified to return with a signal
if some element of the deflating transformation exceeds the bound RMAX.
Otherwise the matrix P that determines the transformation overwrites
A12' DAD is once again called to restore A11 to its original form.
Statement 3.3.5. The submatrix A22’ which was overwritten by
SHRSLV, must be restored before another attempt to deflate is made.
Statement 3.4. Only if A22 is not void was a deflating transforma-
tion generated. 3

Statement 3.6. Set L11 to point to the next submatrix before contin-




A3. Program listing.

SUSROUTINE RDIAG (A+LOAN/EPSHRRIRMAX ER,EI»TYPE,BSsX,LDX,FATL)

TRUE IF THERE 1S ANY ERROR IN BDIAG

bBDIAG USES SURROUTINES ORTHES» ORTRAN» HOR3» EXCHNG® SHRSLVe NADe AND SPI TTe

C
¢
INTEGER LOA» LDXe No TYP?(N)' RS(N)
REAL A(LDAYN)e ERI(N)e EIIN)» X(LDXeN)» EPSHGOR: rRMAX
i LOGICAL FAIL
¢
C BD1AG _REUUCES A MATRIX A TO BLOCKk DIAGON FORM Hy FIRST _
€ PRAOEIREYYFET o oUATE I TR T aRQUERR KoRm Ry AtR3 NN THEA RY |
C SOLVING THE MATRIX EQUATION =~Al1#P+PxA22za12 TO rNTRonuce 7EROS ‘
C ABOVE THE DIAGONAL. THE PARAM;TFRS IN THE CALLING SFQUFNCF
g ARE (STARRED PARAMETERS ARE ALTERED BY THE SUBROUTINF):
¢
C *A AN ARRAY THAT INITIALLY CONTAINS THE N X M MATRIX
¢ TO BE REDUCEN. ON RET A CONTAINS THE REDUCFD
g RLOCK [OIAGONAL MATRIX.
E LDA THE LEADING DIMENSION OF ARRAY A,
. E N THE ORDER OF THE MATRICFS A AND X, i
¢ EPSHQR  THE CONVERGEMCE CRITERION FOR SURROUTINE HOR3.
C  RMax THE MAXIMUM SIZE ALLOWED FOR ANY FLEMENT OF THE
E TRANSFORMATIONS.,
C  *FR A SINGLY SUBSCRIPTED REAL ARRAY CONTATMIMG THE REAL
< PARTS OF THE EIGFNVALUES.,
C kI IGLY SUBSCRIPTED REAL ARRAY CONTAING THE IMAGINAPY i
¢ PartlobY THESETENVALOESY Sl
€ #Tvre A SINGLY SUBSCRIPTED INTEGER ARRAY WHOSE I=TH ENTRY 1§
| ¢ 0 IF THE I=TH EIGENVALUE IS RFAL
¢ 1 IF THE I-TH EthNVALUE IS COMPLEX WITH POSITIVE
] C IMAGINARY PAKT
¢ 2 IF THE I-TH EIGENVALUE IS COMPLEX WITH NFGATIVE
| ¢ IMAGINARY PAR
1 g -1 IF THE I=TH EIGENVALUF COULD NOT BE COMPUTED
! C  *BS A _SINGLY SUBSCRIPTED INTEGER ARRAY THAT CONTAINS BLOCK
¢ STRUCTURE INFORMATION. IF THERS 1S A_RLOCK OF ORDE
¢ K STARTIN? AT A}Lo L) % HE OUTPUT MATRIY A,
¢ BS(L) CONTAINS THE PO IT VE INTE GFR Ko B%(L+1) CONTATNS
C <(K=1)sr BS(LA+2) = =(K~2)» soet -1) = -1
C HUS A Pgsrrxve INTEGER IN HE I NTRY RS
E NDICATES A MNEW BLOCK OF ORDFR BS(L) START Ra AT Atlatds
¢ =X AN ARRAY INTO WHICH THE REDUCING TRANSFORMATIONS
¢ ARE TO BE MULTIPLIED.,
€ LDx THE LEADING DIMENSION OF ARRAY X,
E *FAIL A LOGICAL VARIABLE WHICH 1S FALSE ON NORMAL RETURN AMD
C
¢
C
¢
c
C
¢

INTEGER DA11s DA22s I+ J» Ko KM1s KM2s L, LFAVE, LOOP,
3 1 LIle L22» L22M1s NK
REAL Co» CAVe Os Elr E2¢ RAV, SCo» TEMP

B
".‘.
&

FAIL = ,TRUE.
CUNVERT A TO UPPER HESSENHERG FORM,
CALL ORTHES (LDAYNs1¢NeAJER)

-
[glala BN els!

-
A "
et »
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CALL ORTRAN (LDA*Nr1eNrA,ER?X)

CUONVERT A TO QUASI=-UPPER TRIANGULAR FORM BY QR MFTHOD,
CALL HQR3 (AsXoNo1eN'EPSHQRI'ERIEI»TYPE,LNA»LDX)

CHECK TO SEE IF HQGR3 FAILED IN COMPUTING ANY FIGFNVALUE

DU S I = 1N
IF (TYPE(]1).EQe=1) GO TO 900
CONTINUE
REDUCE A TO BLOCK DIAGONAL FORM
SEGMENT A INTO & QTRIC ? ALl, c DA11 X DA11l BLOCK
WHOSE (101)=ELEMFN A(L11,L11)3 A22¢ A DAZ2 X DA22
BLOCK wHOSE (1,1)=ELEMENT IS AT A(L22,L22): Al12,
A DA11 X DA22 BLOCK WHOSE (101)=ELEMENT IS AT A(L11,L22)3
X DAl1l BLOCK = 0 WHOSF (1,1)-

FEEMEN* IS 2? A(L22.L11).

THIS LOOP USES L11 AS LOOP INDFX AND SPLITS OFF A BLOCK
STARTING AT A(L11l.L11).

L1
AS

) A |
SIGN 550 TO LOOP
ASSIGN 600 TO LE
IF (L11 «GT. N) Go "TO LEAVE
22 =g
THIS LOOP USES DA1l1 AS LOOP VARIARLE AND ATTEMPTS TO SPLIT
OFF A BLOCK OF SIZE DA11 STARTING AT A(L1l1.L11)
ASSIGN 350 TO LOOP
IF (L22 «NEe. L11) GO TO 11n
UAL11l = TYPE(L11) + 1
L22 = L11 + DAl1l
L22Ml = L22 - 1
GO TO 290
CONTINUE

COMPUTE THE AVERAGE OF THE EIGENVALUES IN Al1l

—“>>r
Ni=<<mIl i

oxon
P»>»0O
<€<Z0XT <<

LOOP ON EIGENVALU

2 = tggv-ER(LZZ))**Z + (CAV=EI(L22))%x%x2
L = L22 + TYPE(LZZ) + 1
ASSIGN 145 TO LOOP
IF (LeGTeN) GO TO 150
C = (RAV=ER(L))%%2 + (CAV=EI(L))x%x%x2
IF (C.GE.D) GO TO 140
K &L
D=C¢C
CONTINUE
L =L 4+ TYPE(L) + 1
GO TO 130
CONTINUE
LOOP TO MOVE THE EIGENVALUE JUST LOCATED
INTO FIRST POSITION OF BLOCK A22.

i
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(slelel (glglg]

(glglg]

(gle'e]

[alglgle!

(g'ele}

[glglg]

160

170

1480

190

200
210

ASSIGN 280 TO L
¥

IF (TYPE(K). NE D) G0 To 200

THE BLOCK WE'RE MOVING TO ADD TO A11 IS A 1 X 1
NK = 1

CONT INUE

&5 K &E@.lez) G0 TO 280

IF (TYPE(KM1).EQ.0) GO TO 190

WE'RE SWAPPING THE CLOSEST RLOCK WITH A 2 X 2
KM2 = K 2

CALL EXCHNG (AoXoNoKMZ.Zol EPSHOR+FAIL 1 DALLDX)
IF (FAIL) GO TO 90

TRY TO SPLIT THIS BLOCK INTO 2 RFAL FIGFNVALUES

CALL SPLIT (AerN'KMloFloEZvLDAoLDX)
IF (A(K!KM1).EQeDes) GO TO 17

BLOCK IS STILL COMPLEX.

TYPE(KMZ g

R(K)

DO

X XXXXXmMmmMm|
rmm ommnii i

)
1)

£1
-E
0

OMMMMM T -4~
Ortra D T =0 < <

8
COMPLEX BLOCK SPLIT INTO TWO REAL EIGFNVALUES.

(]
o
z
-
vt
z
o
nN—=m

HiMmi -
n

0
0
R(K)
1

oo MM

He~mememn~TT
-, XXX XXMM
Z=N =X X
e Nwr~—||w—ZZ

OXXZIZI~-ZZT ~~
or-

L22) GO TO 280

Gyt XM MM M) =g =4
OM ==V VDV <<
om

.

WE'RE SWAPPING THE CLOSEST RLOCK WITH A 1 X 1.

CONTINUE

CALL _EXCHNG (AsXoNeKM1,1s1,FPSHARsFATL 1.DA,LDX)
IF (FAIL) GO TO 900

TEMP = ER(K)

ER(K ) = ER(KM1)

ER(KM1) = TEMP

K = KM1

IF (K .LEe. L22) GO TO 280

GO TO 160

THE BLOCK WE'RE MOVING TO ADD TO A11 IS A 2 X 2,
CONTISUE

CONT INUE

IFI(K REQ.ILZZ) GO0 TO 280
IF (TYPE(KM1) +EQe« 0) GO TO 240

WE'RE SWAPPING THE CLOSEST BLOCK WITH A 2 X 2 BLOCK,

KM = K = 2
CAEL EXCHNG (ArXoNoKM2,2¢2¢EPSHARYFATL»LDARNLDX)

D G s i, e (A s
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220

230

240

250

260

270

: 24 -

IF (FAIL) GO TO 900

TRY TO SPLIT SWAPPED BLOCK INTO TWO REALS.
CALL SPLIT ( XeNeKeEL,E2/LDA,LDX)

= mmmm
T op o)
P — g~

= m
nolm-ii
o
m o
n

NZ2~~~~0VUVZ
o
L]

-~ 4XXXXMMm—

L22) 60 TO 260

@=XOMMMM =4~
OMN OFHHNIX<<O
NMNOC~ I~ +~C
=2 M

Oe

WE'RE SWAPPING THE CLOSEST RLOCK WITH A 1 X 1.

CONTINUE

CALL EXCHNG (AsXoNoKM1,1¢2¢EPSHOReFATIL »1 DA,LDX)
IF (FAIh) GO TO 9S00
TYPE (KM1) =1

TYPE(K) = 2

TYPE(K+1) = O

ER(K+1) = ER(KM1)
FR(KM1) = ER(K)

EI(KM1) = %I(K)

EI(K) = EI(K+1)

EI(K+1) = 0.

GO TO 250

CONTINUE

K = KM1

IF (K<EQ.L22) GO TO 260
GO TO 210

TRY TO SPLIT RELOCATED COMPLEX BLOCK.

CONTINUE
CALL SPL{T (Ar XeNerKe
A(K+

E1,E2:LDA/LDX)
IF ( tK)eEQeOs) GO TO 270

STILL COMPLEX.
ER(K) = E1
ER(K+1) = E1
EI(K) = E2
EI(K+1) = =E2
GO TO 280
SPLIT INTO TWO REAL EIGENVALUES.
CONTINUE
TYPE(K) = 0
TYPE(K+1) = O
ER(K) = E1
E?ik*l, = E2
K):O.
EI(K+1) = 0,
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NUE
N 400 _TO LEAVE
(L22 «GT. N) GO TO LEAVF

ATTEMPT 70O SPLIT OFF A BLOCK OF SIZE DA11.
DA22 = N = L22 + 1

SAVE Al2 IN ITS TRANSPOSE FORM IN BLOCK A21,
DO 300 J = L11,L22M1

L22eN
A(Je 1)

AR AN
*P+Px
10)

bO

M
22=

SOLVE =-Al1l

CALL SHRSLV (A(L11oL11)eA(L220L22)0sA(L11sL22)
DA11DA22,LDALNDAYLDAPRMAXPFAIL)

ASSIGN 400 TO LFAVE

IF (.NOT. FAIL) GO TO LEAVF

CHANGE All RACK TO UPPER QUASI=TRIANGULAR.

CALL DAD (ArLDAsL11oL22M1o( 11vL22MLv1er1)
CALL DAD (A+LDA/L11¢L22M1s1 11,L22M)r=1,s0)

WAS UNARLE TO SOLVE FOR P = TRY AGAIN

MOVE SAVED A12 BACK INTO ITS CORRECT POSITIONe
DO 310 L11 L22M1

vo I L22»
A(Ivd)

M= - O
=
N
LRI

60 TO 100
CONTINUE

CHANGE SOLUTION TO P TO PROPFR FORM,
IF (L22 .GT. N) GO TO 440
CALL DAD (AsLDAsL11rL22M1,L11¢N01,
CALL DAD (AoLDAsL11vL22M1vL 110l 22M -l.vl)
MULTIPLY TRANSFORMATION INTO Xe.
ONLY COLUMNS L22 THRU N ARF AFFFCTED.,
DO 410 J = L22»
DO 410 I
DO 410
X(I»
CONTINUE
ZERO OUT Al12 FOR EASE IN HANDLING.

X(IeK) x A(K,yJ)

DO “20 J = L22/N
DO 420 I = L1l1rL22M]
IOJ) = .
CUNTINUE

ULTé?LY IT RY =1 AND CHANMGE
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ZERO OUT TRIANGUL.AR BLOCK RELOW DIAGONAL .
DO 430 _J = Llis._22M1
DO 430 I = L22/N
(1eJ) = 0.
430 CONTINUE
SCALE THOSE COLUMNS OF X THAT WON'T BE ALTFREN AGAIN TO UMITY,
CHANGE All APPROPRIATELY.

440 CONTINUE
DO 500 J = LlloLZZMl

80 458 .%
SC

= Sc + (X(I J) ) x%2

450 CONTINUE
SC = SQRT(SC)
DO 460 I = 1N
X(Ird) = X(IoJ) / SC
460 CONTINUE
DO 470 I = L1ll,L22M1
A(IrJ) = A(I»J) / SC
470 CONTINUE
DO 480 I = L1l1,22M1 1
AlJe]l) = A(JUs]I) % SC
480 CONT INUE ]
500 CONTINUE
STORE BLOCK SIZE IN ARRAY BS,
bS(Lll) = DA1l
DA1l - 1
IF (J .%Qo 0) GO TO 520
DO 510 I = 1.J
BS(L11+4I) = =(DAll-])
510 CONTINUE
S52u CONTINUE
L1l = L22
550 G T0 10
600 CONTINUE
AIL = JFALSE.
RtTURN
ERROR RETURN,

900 CONTINUE
FAIL = +TRUE.
RETURN
END
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SUBROUTINE SHRSLV (A+BeCoeMeNeNA*NBINCorRMAX,FAIL)

SHRSLV IS A FORTRAN IV suanom}nr TO SOLVE THF REAL MATRIX
FEQUATION AX + XB = Co» WH RE A IS IN LOWER REAL SCHUR FORM
AND B IS IN UPPER Rga,s SCHUR FORM SHRSLV USFS THF_AUX=
ILLIARY SUBROUTINE SYSSLVe WHICH IT COMMUNICATFES wITH THROUGH
ggguggggorxngwcx SLVBLK. THE PARAMETERS IN THF CALLING

A toaggB EHSgﬁggsapTED ARRAY CONTAING THE MATRIX A IN

H A DOUBLY SUBSCRIPTED ARRAY CONTAINING THE MATRIX R
IN UPPER REAL SCHUR FORM

C A DOUBLY SUBSCRIPTED ARRAY CONTAINING THE MATRIX C.

[ THE ORDER OF THE MATRIX A

N THE OKRDER OF THE MATRIX B

NA THE FIRST DIMENSION OF THF ARRAY A

NB THE FIRST DIMENSION OF THF ARRAY B

1e THE FIRST DIMENSION OF THF ARRAY C

RMA X MAXIMUM ALLOWED SIZE OF ANY ELEMENT OF THF TRANSFORMATTION
FAIL INDICATES IF SHRSLV FAILED

INTEGER MvNoNAvNBvNCoKvKMloUKvKK'LOEMloDL'LlvIoIH'vaAoNSYS
REAL A(NAe1)e B(NBel)e C(NCo1), To
LUOGICAL FAILe» SING
COMMON/SLVBLK/ T(5¢5) P (5) sNSYSeSING
FAIL = +TRUE.
L =1
LMl = L -1
DL = 1 y
IF (L «EQe N) GO TO 15
IF (B(L+1eL) «NE. 0,) DL = 2
LL = L+DL-1
IF (L «EQe 1) GO TO 30U
DO 20 U = LeLL
DO 20 I = 1M
DO 20 IR = éo&"l
C(Ied) = C(Ied) = C(IoIB)XB(IRJ)
CONT INUE
K =1
KMl = K = 1
DK = 1
IF (K +EQe M) GO TO 45
IF (A(KeK+1l) «NE. 0,) DK = ?2
KK = K+DK=1
IF (K +EQ. 1) GO TO 60
DU 50 I=Ke!KK
DO S0 J=LoLL
D0 S0 JA=1,KM1
C(Ied) = C(Ied) = A(IvJA)XC(JAPY)

CONT&NUE
1F (DL +EQe 2) GO TO 80
IF (DK +«FQe 2) GO TO 70
T(1el) = A(KeK) + ?(Lo%)
IF (T(l'l) .EQ. 00 RE URN
C(KeL) = C(KoL) 7 T(1r1)
IF (ABS(C(KeL)) «GEs RMAX) RETURN
GO TO 100
T(lel) = A(KeK) + B(LoL)
T(1¢2) = A(KoKK)
Ji5:3) 2 AlKKekK) + BILsL)

’ = ’ + ’
Péf) = C(KeL)
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RETURMFD

- B0
H
S
E
E
L

= A(TI,J)xA(JrK)

GO TO 20
1K)
N) GO TO 100
)
)
= A(KeI)%A(I,J?

GO TO 30
A(Ked) /7 A(KeK)

) GO TO S0

) RETURN
J) GO TO 110
- A(I,J)%xB(J)

1) 6O TO 70

v
- o L

/ A(lel)

ImMl
I)
IY /7 A(I,])

(A(KPK))
N
(
T
’
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N
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INU
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E
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AANZ N oew
- -2 Hed=tp= DO
CX-Q~22
= T ) e
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R
K
A
E
COMMON /SLVBLK/ A(5¢5)¢ B(S)» No SING

SUHROUTINE SYSSLV
A
:
A

INTERCHANGF THE COMPONENTS OF B
Do
J
R
M

COMPUTE THE LU FACTORIZATION OF A
M
A
100

SOLYE SY
(1
o
I
D
e}
N
SOLVE UX=Y

110 CO

-\

C

(& o

C
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SUBROUTINE HQR3(A»VeNeNLOWsNUP,EPSsERIFI,TYPE+NA,NV)
INTEGER NoeNA+NLOWYNUPoNVe TYPE (N)

o

g . REAL A(NA+N) sET(N) oER (M) s EPS sV (NVeN)
f & HUR3 REDUCES THE UPPER_HESSENBFRG MATRIX A TO O\ASI-
, ¢ TRIANGULAR FORM BY UNITARY SIMILARITY TRANSFORMATIONS,
: C THE EIGENVALUES OF Ae WHICH ARF CONTAINED IM THF 1X1
f C AND 2x2 DIAGONAL BLOCKS OF THE REDU?;D MATRIX» ARE
; C ORDERED IN DESCENDIMNG ORDER OF MAGNITUDE ALONG THE
C DIAGONAL. THE TRANSFOKMATINONS ARE ACCUMULATED IM THF
C ARRAY V. HGR3 REQUIRES THE SUHBROUTINES FXCHNG,
; C QRSTEPs» AND SPLIT. THE PARAMETERS IN THE CALLING
; C SEQUENCE ARE (STARRFD PARAMFTERS ARF ALTERED RY THF
i E SUBROUTINE)
' C *A AN ARRAY THAT INITIALLY CONTAINS THF N X M
C UPPER HESSENBERG MATRIX TO BF RFDUCFDe ON
C RETURN A CONTAINS THE REDUCFDe QUAST=-
C TRIANGULAR MATRIX.
C *V AN ARRAY THAT CONTAINS A MATRIX INTOH WHICH
C THE REDUCING TRANSFORMATIONS ARE TO RE
. C MULTIPLIED.
C N THE ORDER OF THE MATRICES A AND V.
, C NLOW A(NLOW=1¢NLOW) _AND A(NUP+NUP+U) ARF
C NUP ASSUMED TO RE ZFRO, AND ONLY ROWS Nj OW
o THROUGH NUP AND COLUMNS NLOW THROUGH
C NUP ARE TRANSFORMEN, RESULTING IN THF
. g gAngLATION OF EIGFNVALUES NLOW ‘
f H |
\ C EFS a CONVERGENCE CRITFRION, |
C *ER AN ARRAY THAT ON RFTURN CONTAINQ THF RFAL
¢ PARTS OF THE EIGENVALUES
C *F 1 AN ARRAY THAT _ON RFTUEN CONTAINS THF
C IMAGINARY PARTS 0O EIGENVALUES.
C *TYPE AND INTEGER ARRAY WHOSE I=TH EMNTRY rs
C D IF THE I=TH FIGENVALUE IS REA|
C 1 IF THE I=TH FIGENVALUE IS COMPLE X
i C WITH POSITIVF IMAGINARY PART,
C 2 IF_THE I-TH FIGENVALUE IS COMPLEX
! C Y} I NEGATIVF émhsxnnpv PART,
! C -1 UF WAS NOT
' C CALCULATEn SUCCESSFULLY.
; ¢ NA THE F}RQT DIMQN OF ;HF ARRAY A,
i E NV THE FIRST DIMENS o OF THE ARRAY V.
, E INTERNAL VARIARLES
INTEGER ToITeLeMUeNL»NU
KEAL E10E20Pv(u ReSeToweXeYe?2
" LUGICAL FAIL
E INITIALIZE.
DU 10 x-NLow.Nup
TYPE ( -1
10 CONTIN
: ¥ 2 0
E MAIN LOOP. FIND AND ORDER EIGENVALUES,
NU = NU
100 IF§?U .LT. NLOW) GO TO 500
C
2 ¥ C QR goopg FIND NEGLIGABLE ELFMENTS AND PERFORM .
;v (c: wR T PSQ
.29 ¢ 110  CONTINUE
£
i E SEARCH BACK FOR NEGLIGARLE ELEMENTS.
L= NU
?i§, 120 CONTINUE ;
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lelalalel
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140

150

(alglalel

(glale]

(21glg]

160

N

170

200

“210
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IF(L «EQ. NLOW) GO TO 130

IF(ABS(A(Lvh-l)) oLT. EPS®(ABS(A(L~1sL=1))+ABS(A(L,L))))
GO TO 13

L. .= L=1
GO TO 120
CONTINUE

TEST 7O SEE IF AN EIGENVALUE OR A 2X2 BLOCK
HAS BEEN FOUND.

X = A(NU,NU)
IF (L .EQ. NU) GO TO 300
i 2 AN
YeT A VANV (M8 4aNYho
TEST IT ERATION OUNT. IF IT IS 30 QUIT., IF
IT IS 10 OR 20 SET UP AN AD=HOC SHIFT.
IF(IT +EQ 60) G0 TO 500
IF(IT.NE.40 .ANNs IT.NE.50) GO TO 150
AD=-HOC SHIFT.
T = T. ¢ X%
DO 140 I=NLOW,NU
A(IeI) = A(I0I) = X
CONT INUE
S = ABSTA(NUSNU=1)) + ABS(A(NU=1,N=2))
X = 0.75%S
W = =0.4375%x5%%2
CONT INUE
IT = 17 + 1
LOOK FOR TWO COMSECUTIVE SMALL SUR=DTAGONAL
ELEMENTS.,
N NU=p
CONTINUE
Z = A(NLeNL)
R=ZX=2
SSY = 2
P = (R¥S=W)/A(NL+1,NL) + A(NLoNL+1)
@ = A(NL+1sNL+1) = Z = R = S
R = A(NL+2sNL+1)
S = ABS(P) + ABS(Q) + ABS(R)
P = P/S
Q = Q/S
? ?NE/SE L) GO TO 17
IE(AESIA?&L.NL-1)§a(ARg (Q)+ABS(R)) L
EPS*ARS (P) = (ABS(A(NL=1sNL=1))+ARS(
GO TO 170
= NL=1
GO 160
CONTINUE

PERFORM A QR STFP BETWEEN NL AND MU,
CALL QRSTEP(A»ViP2sQrRoNLoNUJsNoNAPNV)

GO TO 110
2X2 8LOCK FOUND.

FINU +NE. NLOW+1) A(NU=1/NU=2) = 0,
(NU/NU) = A(NUoNU) + T

(NU=1,NU=1) = A(NU=1»NU=1) + T
YPE(NU) = 0

YPE(NU=1) = O

U = NU

LOOP TO POSITION 2X2 BLOCK.

CONT INUE
NL = MU=-1

F
7V 4ARS(AINL41,NL41))))
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CALL EXCHNG(A»VeNIMU»1,2,EPS»FATLINAINV)

IF(.NOT. FAIL) GO TO 325
TYPE (MU) = =1
YP (MU+1) = =1
YPE (MU+2) = -1
G0 TO0 500
32hH CONTINUE
MU = MU+2

GO TO 340
330 CONTINUE

THE NEXT BLOCK IS 1X1.

(algle]

MU+
340 CONTlNUE
GO TO 320
350 CONTINUE
MU = NL
NL = 0
IF(MU «NE. 0) GO TO 310

occo

4uu CONTINUF
L=-1
(€1¢] TO 100

COMPUT HEIR VALUES AND

500 IF(NU «LT. NLOW) GO TO 507
DO Su3 1=1.NU
| ACIsI) = A(IoI) + T
i 505 =~ CONTINUE
507 CONTINUE
U = NUP
0 CONTINUE
! IF(TYPE(NU) «NEe. =1) GO TO 515
! NU = NU=1
! 1 OGngOEbQO
515% CONTINU
IF(MU «EQe. NLOW) GO TO H2C
IF(A(NUsNU=1) LEQ., 0.) GO TO S20

2X2 RLOCK.,.
SPLIT(AuVoNvNU-l E1¢E2¢N
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¢ 520 CONTINUE
= ¢ SINGLE ROOT,
ER(NU) = A(NUINU)

E. NLOW) GO TO 510

'..
ko
-k;

§

r

b

by

S ’
¥

IF(AH%(A(ggoMU)) «GE. ARS(A(MU+1,MU+1)))
CALL EXCTNG(A 'VeNeMUr1,10EPSeFAIL/NAINV)Y

GO BACK AND GET THE NEXT EIGFNVALUE.

ALL THE EIGNVALU HAVE BE$N,FOUND AND ORDERFD.
E PE.

AoN
U=1) +EQ. 0.) GO TO 520
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ATTEMPT TO SPLIT THE BLOCK INTO TwO REAL
EIGENVALUES.

CALL SPLIT(AsVeNeNL,EL1rE2¢NA?NV)

IF THE SPLIT WAS SUCCESSFUL, GO AND ORDER THF
REAL EIGENVALUES.

IF(A(MUsMU=1) +EQ. 0.) GO TO 310

TEST TO SEE_IF THE BLOCK IS PROPERLY POSITIONED.
NO IF NOT EXCHANGE IT

F(MU +EQs NUP) GO TO 400

F(M? «+EQe NUP=1) GO TO 220

F(A(MU+2/MU+1) +EQe 0es) GO TO 220
THE NEXT BLOCK IS 2X2.

IF(A(MU=1sMU=1) %A (MU, MU)=A (MU=1)MU) %A (MUpMLI~1)

A
1
I
I

eGF o A(MU+1,MU+L) %A (MU+29MU+2) =A(MU+1 o MII*+2)

A(MU+2,MU+1))
GO TO 400

CALL EXCHNG(AoVoNvNLv 22,EPSeFAILIMAIMV)

IF(+NOT. FAIL) GO TO 215
TYPE(NL) = =
TYPE(NL+1) = =
TYPE(NL+2) = -1
TYPE(NL+3) = =1
G0 TO 500

CONTINUE

MU = MU+2

G0 TO 230

CONTINUE

THE NEXT BLOCK IS 1X1.,

IF(A(MU=1yMU=1)*A(MU,MU) A (MU=1pMU) %A (MUpMmIJ=1)
eGF e A(MU+1»MU+]1)%x%x2)
GO TO 400
CALL EXCHNG(A»VeNeNL22s1,EPS/FAILINA,NV)
IF(«NOT. FAIL) GO TO 225
TYPE(ML) = -1
TYPE(NL+1) = -1
TYPE(NL+2) = -1
60 TO 500
CONTINUE
MU = MU+1
CONTINUE
GO0 TO 210
SINGLE FIGENVALUE FOUND.
NL = 0
ACNU/NU) = A(NUeNII) + T
IF(NU «NEs NLOW) A(NUsNU=1) = 0.
TYPE(NU) = O
MU = NU

LOOP TO POSITION ONE OR TwO REAL EIGENVALUES.
CONTINUE
POSITION THE EIGENVALUE LOCATED AT A(NLeNL),
CONT INUE
IF(MU +EQ. NUP) GO TO_350
IF(MU +EQs NUP=1) GO TO 330
IF(A(MU+2)MU+1) +EQ. 0¢) GO TO 330

THE NEXT BLOCK IS 2x2.

IF(A(MUIMU) x%2 +GE o
A(MU+1'MU+1)tA(MU+2.MU+2) =A(MU+1)MU+2) %A (MUI429sMU+1))
GO TO 400

il
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UBROUTINE EXCHNG(AsVeNeLeB1eB2oEPS/FAILsNAWNV)

EGER BleR2eLoNAYNV
A(NAON)'EPS'V(NV N)
CAL FAl

MSECUTIVE

(17,

SE
2)
RY

E RLOCKS
MATION

HE SURROUTINE

HE CALLING SFQUENCE ARF |
ALTEREDCBY THE SUBROUT INE) ;

HOSE BLOCKS ARFE TO RFE

ED.
INTO WHICH THE TRANSFORMATIONS
GCCUMULATED.

H CO
.LE.
NITA
S _TH
SFOR

~C=2>UIWNTGC X~ UV
- X

U M—yg=— CMZ
- CR2pXx< O>-1
>=>2Z=DTM
TMODM =2
>V MpZ WOL
mnm<
H

OQTXOXOPX» VI MO-=M
NO VI~ VNM<—=T~ >0

-
IX
m
(Valye]
—
N
m
o
m
-t
I
m
M
e
P o)
73]
p
x
e
o
()
‘5

1

B2 THE SIZE OF THE SECOND RLOC .

EPS A CONVERGENCE CRITFRION. v

FAIL A LOGICAL VARIARLE WHICH IS _FALSE OM A :
NORMAL RETURN. IF THIRTY ITFRAT NS FRE
PERFORMED WITHOUT CONV;RGENCF' FAIL IS SFT
TO TRUE AND THE ELFMEN
A(L+B2,L +B2=1) CANNOT BE AQS!MED ER

NA THE FIRST DIMENSION OF THE ARRAY A.

NV THE FIRST DIMENSION OF THE ARRAY V.

TERNAL VARIABLES.

GER IeITeJelLleM
PeQo RoStWoXoY!?

£
L
L = «FALSE.
Pl

0
I
Z
A
v

OCOOOOOOOOOCOOOOOOOOOONOOONNOO

0

IN
RE
FA
PR asE 0262 25%8%16 10

NTERCHANGE 1X1 AND 1X1 BLOCKS.
1

T
A
I
(
I

) = AlL,L)
)

DX = $+=
LIS
O Trl"
® o P
-~ =

RETURN

T(P%x%2 + Q**2)

20NDT PP>
CNNDON\\e T~

I~ i

Che
N—mnZ
[
C

Nil=

vdJ)
- QxA(LeJ)

=i
-z 4
bt
OV~
*
>+
rec
+ %

i
r

OV~
*
>+

A(IoL+1)
L+1) = oxA(I.L)

[d g
He—mr

—7 e w
r

g
H—~2Z
-
TV~
#*
<+

V(IIsL*1)
L+1) = axV(I,L)

rcr‘r‘tncr'r'oucnr-"cnx:ux:cz:m>rr+

~M—d kM preM—s ¥

*eZew
o Vile

7 co

“ Al

’ RE

10 CONTINUE |
INTERCHANGE 1X1 AND 2X2 BLNCKS. ﬁ

i
—-FfZ<<\n
mo—»—amv-o "

(glnle]




™
v BT
X = A(L,L)
P =1,
il
(I:?LL QRSTEP (Ao VoP2sQeReLoL+2,NeNAINV)
20 i1 = ?T+1
] IF(IT .LE. 60) GO TO 30
FAIL = & .
RFTURN
30 SONTINUE
= A(LoL) = X
Q= a(L*loL)
¢ BATL GRSTEP (AsViPr@rRILIL+2¢ Ny NA,NY)
IF(ABS(A(L+2¢1.+1)) «GT.
i EPS* (ABS(A(L+1,L+1))+ABS(A(L+2,L4+2))))
GO TO 20
A(L+2¢L+1) = 0.
RETURN
40 CONTINUE
C
. C INTERCHANGE 2Xx2 AND B2XB2 BLOCKS. |
C |
M = L+2 |
X = A(L+1,L+1) |
Y = A(LeL) |
W = A(L+1,L)*xA(LoL+1)
P = 1.
§ 21
‘ %#LL 8RSTEP(AOV'PonR'LvM.NvNA'NV)
i ‘ 50 1T = IT+1
E : IF(IT «LE. 60) GO TO 60
! FAIL = +TRUE.
RETURN
o0 CONTINUE
: 7 = A(LsL) ﬁ
! R & X =2
i g = ¥ = 7
' = (R*S=W)/A(L+1/,L) + A(L,L+1)
Q = A(L+1¢L+1l) = Z = R = §
R = A(L+2¢L+1)
S = ABS(P) + ABS(Q) + ABS(R)
P = P/S
e = 0/?
RA= R(,)RSTEP(A PyQeR MeNoNAPNV)
’ ’ ’ [4 . ’ [ 4 ’
IF?A%%(A(M-IoM-2Y) «GTe EéS*(ﬂbS(A(M-!'M-Y))+AHS(A(M—20M-?))))
1 GO TO 50
A(M=1sM=2) = 0.
RETURN
CONTINUE
END

Y

g %

A on m o 8,
v !

.~ \ e




“;T:m s

i

¥
$
&

N e

OONOCOOOOOOONOCONOOOOOOOOOOONOOO (o]

(glglg] (g}

[elglg]

10
20

30
40

SUBROUTINE SPLIT(AsVeNetL+EL1+E2,NA»NV)

INTEGER LeNeNAoNV
REAL A(NA¢N) o V(NVeN)
GIVEN THE UPPER HESSENBERG MATRIX A WITH A 2X2 aLOCK
STARTING AT A(LeL)e SPLIT DETERMINES IF THF
CORRESPONDING ;I??NVA&UES ARE REAB OR ?OMPLEX. 1F THEY
BLScKk 10 UPPEG TRISNGULAR FORM MITH Thr DICESvmLE:
HF _F VAI_l)
Ob LARGES¥ sg LU*E LUE APPEARiNG FIRS THEI
ROTATION IS ACCUMULATED IN Ve THE EIGENVALUFS (REAL
OR COMPLEX) ARE RETURNED IN %g AND F2. THE PARAMETERS
IN THE CALLING SEQUENCE ARE TARRED PARAMETFRS ARF
ALTERED BY THE SUBROUTINE)
*A THE UPPFR HESSENVERG MATRIX wHOSF 22
BLOCK.IS TO BE SPLIT.
*\ THE ARRAY IN WHICH THE SPLITTING TRAMNS=
FORMATION IS TO BE ACCUMULATED.
N THE ORDER OF THE MATRIX A.
L THE POSITION OF THF 2X2 BLOCK.
*E1 ON RET¥RN IF THE EIGENVALUES ARF COMPLFX
xE2 INS TH COMMON REAL PART AND
E2 CONTAINS THE POQITIVF IMAGINARY PART,
IF THE EIGENVALUES ARE REALs E1 CONTAINS
THE ONE LARGEST IN ABSOLUTF VALUFE AND F2
CONTAINS THE OTHER ONE.
NA THE FIRST DIMENSION OF THF ARRAY A,
NV THE FIRST DIMENQION OF THE ARRAY V.
INTERNAL VARTASLES
IITEGER Iedell
REAL PerQeReTo UonXvY0£
X = A(L+1,L+1)
Y = AtLoL)
w = A(LeL+1)xA(L+1,L)
P = (Y=X)/2.
Q Px%x2 + W )
IF(Q «GEe 0Oes) GO TO 5
COMPLEX EIGENVALUE.
El =P + X
EQ = SORT(=Q)
RETURN
CONTINUE
TwO REAL EIGENVALUESe. SET UP TRANSFORMATION.
Z = SORT(QR)
IFéP .LT. g.) GO TO 10
GO TO 20
CO?TINUE
CONTINUE
IF(Z_.EO.ZO.) G0 TO 30
GO TO 40
ONTINUE
R = Ue
CONTINUE
IF(ABS(X+2) .GF. ABS(X+R)) Z = R
YS Y = Y =72
X = =2
T = A(LeL+1)
U = A(L+1,L)
IFéAQS&Y)+AR§(U) +LEs ARS(T)+AKRS(X)) GO TO 60
=y
GO TO 70

[

ST e i e
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60

70

80

90

100

110

~ 38 =
CONTINUE
Q = X
*%2 + Q%x%2)
?.) GO TOo 80
L+1)

MM O

P
L
1
)

MZ > r—=4=m
F+=e ~

PREMULTIPLY.

DO 90 J=LeN
2 = A(LeJ)
AlLed) = PxZ + QxA(L+1,J)
A(L+10J) = PxA(L+10J) = Q%2
CONTINUE

POSTMULTIPLY.

(IoL+1)
L+1) ~ Q%2 .
CONTINUE 1

ACCUMULATE THE TRANSFORMATION IN V.

>>N
r>» +

V(IsL+1) 3
L+l) = Q%2
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SUBROUTINE QRSTEP(A»VePrOrRINL.,NUsNsNA,NV)

INTEGER NeNANL s NUpNV
REAL 2 (NA!N)PrQeReVINVeN)

QRSTFP PFRFORMS ONE IMPLICIT QR STEP ON THE

UPP%R HESSENB RG MATRIX A. THF SHIFT éS EETE RMINED
HE NU Pe@e AND Re AND THE STF PLIFD TO

rOWS AND COL MNS NL THROUGH NU, THE TRAHSFOPMATIONS

ARE ACCUMULATED IN V. THE PARAMETERS IN THF CAl LING

g&gggﬁ??NAHE (STARRED APRAMETERS ARE ALTFRED RY THF

*A THF UPPFR HESSENBEKG MATRIX ON WHICH THF
R STEP IS TO BE PFRFORMED.

x\V THE ARRAY IN WHICH THE TPANSFORMATIONS

ARE TO RE ACCUMULATED

:g PARAMETERS THaT DETERMINE THF SHIFT,

*R

NL THE LOWFR LIMIT OF THE STFP.

NU THE UPPER LIMIT OF THE STFP.

N THF ORDER OF THF MATRIX A,

NA THE FIRST DIMENSION OF THF. ARRAY A,

NV THE FIRST DIMENSION OF THE ARRAY V.

INTERNAL VARIABLES.

INTEGERXI'JO KoeNL2»NL3»NUM1
EGeTcRL LALS

2
L2»N
) = 0.
Q

« NU) GO TO 30
+3

SNL3»NU
=3) = 0.

NL+
=N
=2
E

oF
NL
I
I

UE

DETERMINE THE TRANSFORMATION,

LA T _ L] 0.
IF (K -EQ. E GO }0 40
S A(KoK-l)
§ = Alk+lik=1)
IF(«NOT.LAST) R = A(K+2/K=1)
X = ABS(P) 4+ ABS(Q) + ARS(R)
IF(X «EQe 0es) GO TO 130
P = P/X
Q = Q/X
R = R/X
CONT INUE
S_= SQRT(P%x2 + Qt*% + R®x%x2)
IF(P oLTe 04) S = =
IF(K «EQe NL) GO TO 50
A(KeK=1) = =Sx
G0 _TO 60
CONTINUE
IF(NL eNEe 1) A(KiK=1) = =A(KiK=1)
CONT INUE
Pz=P + S
X = P/S
Y = Q/S
Z = R/S
@ = Q/P
R = R/P
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70

80

90

100

S

PREMULTIPLY.

00 80 J=KeN
= A(K»J)
IF(LAST) 60
P =P R
A(K+20
NU
0J§ = A
= A(K

POSTMULTIPLY.

J = MINO(K+3,NU)
DO 100 I=1,J

= X*A(IoK)_+ Y*A(IsK+1)
IF(LAST TO 90
P =P A(IK+2)
(IekK+2) = PxR

@
NO

(
A
ACI
I/K

ACCUMULATE THE TRANSFORMATION IN Ve

LO 120 I=1»
P = XgV(IoK)

(I,K+1)

L
mn
—~
-

¥
P +
K
U
1

Ketrtl] >
+Z-

2)
+2) = PxR
) - PxQ

P

)
+
E
2
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cxX
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TO 20
R
GH

(
M
T
1
1) GO
=MP» IGH
+ ORT(I)*Z(I,J)

o hhza k.

MP = IGH = MM
)
(

MP, IGH

MP=1)
0e)
P

ZNT -2

H=E A ——D

i =4

OZN NZ=D

O O OFZ2Z

orQ VZ=x
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0.
DO 110 1
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